NAG Toolbox for MATLAB

c06eb

1 Purpose

c06eb calculates the discrete Fourier transform of a Hermitian sequence of n complex data values. (No extra workspace required.)

2 Syntax

$$[x, ifail] = c06eb(x, 'n', n)$$

3 Description

Given a Hermitian sequence of n complex data values z_j (i.e., a sequence such that z_0 is real and z_{n-j} is the complex conjugate of z_j , for j = 1, 2, ..., n-1), c06eb calculates their discrete Fourier transform defined by

$$\hat{x}_k = \frac{1}{\sqrt{n}} \sum_{i=0}^{n-1} z_j \times \exp\left(-i\frac{2\pi jk}{n}\right), \qquad k = 0, 1, \dots, n-1.$$

(Note the scale factor of $\frac{1}{\sqrt{n}}$ in this definition.) The transformed values \hat{x}_k are purely real (see also the C06 Chapter Introduction).

To compute the inverse discrete Fourier transform defined by

$$\hat{y}_k = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} z_j \times \exp\left(+i\frac{2\pi jk}{n}\right),$$

this function should be preceded by a call of c06gb to form the complex conjugates of the z_i .

c06eb uses the fast Fourier transform (FFT) algorithm (see Brigham 1974). There are some restrictions on the value of n (see Section 5).

4 References

Brigham E O 1974 The Fast Fourier Transform Prentice-Hall

5 Parameters

5.1 Compulsory Input Parameters

1: $\mathbf{x}(\mathbf{n})$ – double array

The sequence to be transformed stored in Hermitian form. If the data values z_j are written as $x_j + iy_j$, and if \mathbf{x} is declared with bounds $(0 : \mathbf{n} - 1)$ in the (sub)program from which co6eb is called, then for $0 \le j \le n/2$, x_j is contained in $\mathbf{x}(j)$, and for $1 \le j \le (n-1)/2$, y_j is contained in $\mathbf{x}(n-j)$. (See also Section missing entity co6background12 in the Co6 Chapter Introduction and Section 9.)

5.2 Optional Input Parameters

1: n - int32 scalar

Default: The dimension of the array x.

[NP3663/21] c06eb.1

c06eb NAG Toolbox Manual

n, the number of data values. The largest prime factor of \mathbf{n} must not exceed 19, and the total number of prime factors of \mathbf{n} , counting repetitions, must not exceed 20.

Constraint: $\mathbf{n} > 1$.

5.3 Input Parameters Omitted from the MATLAB Interface

None

5.4 Output Parameters

1: $\mathbf{x}(\mathbf{n})$ – double array

The components of the discrete Fourier transform \hat{x}_k . If **x** is declared with bounds $(0 : \mathbf{n} - 1)$ in the (sub)program from which co6eb is called, then \hat{x}_k is stored in $\mathbf{x}(k)$, for $k = 0, 1, \dots, n - 1$.

2: ifail – int32 scalar

0 unless the function detects an error (see Section 6).

6 Error Indicators and Warnings

Errors or warnings detected by the function:

ifail = 1

At least one of the prime factors of **n** is greater than 19.

ifail = 2

n has more than 20 prime factors.

ifail = 3

On entry, $\mathbf{n} \leq 1$.

ifail = 4

An unexpected error has occurred in an internal call. Check all (sub)program calls and array dimensions. Seek expert help.

7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing the results with the original sequence (in exact arithmetic they would be identical).

8 Further Comments

The time taken is approximately proportional to $n \times \log n$, but also depends on the factorization of n. c06eb is faster if the only prime factors of n are 2, 3 or 5; and fastest of all if n is a power of 2.

On the other hand, c06eb is particularly slow if n has several unpaired prime factors, i.e., if the 'square-free' part of n has several factors. For such values of n, c06fb (which requires an additional n elements of workspace) is considerably faster.

9 Example

```
x = [0.34907;
0.5489000000000001;
0.74776;
```

c06eb.2 [NP3663/21]

```
0.94459;
1.1385;
1.3285;
1.5137];
[xOut, ifail] = c06eb(x)

xOut =
1.8262
1.8686
-0.0175
0.5020
-0.5987
-0.0314
-2.6256
ifail =
0
```

[NP3663/21] c06eb.3 (last)